06/23/11

Towards a Compelling Physics Case for a Future eRHIC

Marco Stratmann

BROOKHAVEN
NATIONAL LABORATORY

marco@bnl.gov

organizers: D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang

strong BNL involvement

convenors: D. Hasch, M.S., F. Yuan spin & PDFs

M. Burkardt, V. Guzey, F. Sabatie imaging

A. Accardi, M. Lamont, C. Marquet eA

K. Kumar, Y. Li, W. Marciano beyond SM

main goal: sharpen the physics case for an EIC for next NSAC long range plan

- identify outstanding open questions in hadronic physics still relevant in 10+ years
- devise key "golden" measurements in ep and eA to address these questions
- quantify experimental needs & requirements and study feasibility

very successful, well attended program; most goals accomplished

detailed 500+ pages write-up is in its finishing stages - to appear on the arXiv soon

but no time to sit & relax

- studies for identified "golden measurements" need to be substantiated & feasibility demonstrated
- input for community wide white paper (draft by end of 2011)

most compelling physics questions

spin physics

what is the polarization of gluons at small x where they are most abundant

what is the flavor decomposition of the polarized sea depending on x

determine quark and gluon contributions to the proton spin at last

imaging

what is the spatial distribution of quarks and gluons in nucleons/nuclei

understand deep aspects of gauge theories revealed by k_{T} dep. distr'n

possible window to orbital angular momentum

physics of strong color fields

quantitatively probe the universality of strong color fields in AA, pA, and eA

understand in detail the transition to the non-linear regime of strong gluon fields and the physics of saturation

how do hard probes in eA interact with the medium

SELECTED
"GOLDEN" MEASUREMENTS

the quest for the spin of the proton: Δg

current status:

DSSV global fit de Florian, Sassot, MS, Vogelsang

- low x behavior unconstrained significant polarization still possible
- no reliable error estimate for 1st moment $\int_0^1 dx \, \Delta q(x, Q^2)$ (enters spin sum rule)
- RHIC will continue to improve our knowledge at medium x

best probe for small x gluons pQCD scaling violations

$$\frac{dg_1(x,Q^2)}{d\ln Q^2} \propto -\Delta g(x,Q^2)$$

what can be achieved for Δg at eRHIC

how effective are scaling violations ? Sassot, MS quantitative studies based on simulated data for stage-1: $5 \times (50, 100, 250, 325)$ GeV

expect to determine $\int_0^1 dx \, \Delta q(x,Q^2)$ at about 10% level (or better - more studies needed)

kinematic reach down to $x = 10^{-4}$ essential to determine integral

large Q^2 : novel electroweak probes for Δq 's

unexplored so far - unique opportunity for the EIC

most promising: charged current DIS

20 250 *G*eV DIS cuts 10 fb⁻¹

need to be able to reconstruct x, Q^2 from hadronic final-state

separate up-type and down-type PDF combinations by varying y

$$= \frac{(1-y)^2(\Delta d + \Delta s) - (\Delta \bar{u} + \Delta \bar{c})}{(1-y)^2(d+s) + (\bar{u} + \bar{c})}$$

Cabibbo suppressed contributions neglected

 $A^{W^{\perp}}$

aside: electroweak precision physics at eRHIC?

•goal: measure running of $\sin^2 \Theta_W$ over a wide range of scales Q

• other avenues pursued: electron-tau conversion

Deshpande, Faroughy, Gonderinger, Kumar, Taneja

saturation in eA DIS - what to expect

gluons in nucleus: terra incognita

at high energy/small x: transition to non-linear regime of strong gluon fields; DGLAP fails

physics in **saturation regime** controlled by dynamical semi-hard scale $Q_s(x, A)$

 1^{st} hints for saturation at $x \approx 10^{-3}$ from RHIC forward hadrons in dAu

estimate relevance of non-linear effects from average strength of dipole scattering in DIS

recall: DIS in the proton rest frame: photon splits into a quark-antiquark pair ("color dipole") which scatters off the target proton (= "slow" gluon field)

$$|\sigma_{T,L}^{\gamma_{1},1}(x,Q^{2})| = \int d^{2}r \, dz ||\Psi_{T,L}(z,\mathbf{r},Q^{2})|^{2} \, d^{2}b \, N(x,\mathbf{r},\mathbf{b})|$$

saturation in eA DIS - cont'd

quantitative estimates

M. Diehl, T. Lappi

find: $\sigma_L^{\gamma^{\gamma}}(\mathbf{x},\mathbf{Q}^2) \leftrightarrow F_L(\mathbf{x},\mathbf{Q}^2)$ most sensitive to gluons

as expected (HERA data): no chance in ep

eA much more favorable to study saturation than ep

di-hadron correlations in eA

never been measured before; excellent signature for saturation in eA

systematic depletion of away-side peak with increasing nuclear size/energy

can be also obtained in

TMD factorization

<-> unintegrated gluon at small x

hadronization in eA

physics objectives: understand quantitatively medium effects such as parton energy loss, p_{\top} broadening, hadron absorption, ...

typical observable: multiplicity ratios for ep vs. eA $\mathbf{R}_{\mathbf{A}}^{\mathbf{h}}$

$$-\frac{N_{\mathbf{A}}^{h}(\mathbf{Q^{2}},\nu,\mathbf{z},\mathbf{p_{T}^{2}})/N_{\mathbf{A}}^{\mathrm{DIS}}(\mathbf{Q^{2}},\nu)}{N_{\mathbf{p}}^{h}(\mathbf{Q^{2}},\nu,\mathbf{z},\mathbf{p_{T}^{2}})/N_{\mathbf{p}}^{\mathrm{DIS}}(\mathbf{Q^{2}},\nu)}$$

advantage: dependence on nuclear PDFs largely drops out recent NLO study
Sassot, MS, Zurita

• hadron attenuation studies by R. Dupre, A. Accarding vastly extended reach in $\nu = \mathbf{q} \cdot \mathbf{P}/\mathbf{M}$ can "dial" v to control characteristic path length in medium allows for detailed studies of energy loss, ...

heavy quark propagation & energy loss
 never studied in eA
 quark mass dependence of energy loss

studies by R. Dupre, A. Accardi

complication: QED radiative corrections

precision measurements in ep/eA require good understanding of QED corrections

problem:

photon radiation strongly affects exp. determination of kinematics

e.g.
$$\mathbf{Q^2} = -(1 - \mathbf{l'})^2 \rightarrow \bar{\mathbf{Q}^2} = -(1 - \mathbf{l'} - \mathbf{k})^2$$

effects are large but we can benefit from HERA experience

extraction of "true" structure functions requires unfolding procedure:

$$\begin{split} \mathbf{F}_i^{\mathrm{obs}}(\mathbf{x},\mathbf{Q^2}) &= \int d\bar{\mathbf{x}} d\bar{\mathbf{Q}}^2 \; \mathbf{R}_i(\mathbf{x},\mathbf{Q^2};\bar{\mathbf{x}},\bar{\mathbf{Q}}^2) \; \mathbf{F}_i^{\mathrm{true}}(\bar{\mathbf{x}},\bar{\mathbf{Q}}^2) \\ & \text{``radiator function''} \\ & \text{calculable} \end{split}$$

"3D imaging" of nucleons and nuclei

goal: going beyond longitudinal momentum structure & collinear factorization

TMDs

GPDs

2+1 D picture in momentum space

2+1 D picture in impact-parameter space

TMDs @ eRHIC

suite of observables accessible in azimuthal (ϕ) asymmetries in SIDIS

related to entire zoo of TMD functions measured at large x by HERMES & COMPASS

focus on unpolarized f_1 and Sivers function to illustrate underlying physics:

$$f_{q/P^{\uparrow}}(x, \mathbf{k}_{\perp}, S) = f_1(x, \mathbf{k}_{\perp}^2) -$$

"unintegrated PDFs"

 k_{T} dep. gluon plays prominent role at small x rather direct access to saturation scale $Q_{s}(x)$ (e.g. through di-jet correlations in eA)

"Sivers effect"

access to 3D imaging in momentum space non-trivial role of Wilson lines role of spin-orbit correlations & OAM

correlation of transverse spin of proton with k_T of unpolarized quark

recent work by Z. Kang, J. Qiu

GPDs: access to transverse position

need to measure & study exclusive processes:

deeply virtual Compton scattering (DVCS)

exclusive meson production

• generalized parton densities (4 per flavor) needed to describe such processes:

GPDs depend on x, ξ , t, Q^2

convenient: symmetric choice of mom. fractions

•x, ξ : mom. fractions w.r.t. $P = \frac{1}{2}(\rho - \rho')$

where $\xi = (p - p')^{+}/(p + p')^{+}$

in DVCS: x integrated and $\xi = x_B/(2-x_B)$

ullet t: trade for trans. momentum transfer Δ

- GPDs represent interference between amplitudes for different nucleon states
- connection to energy-momentum tensor & OAM Ji
- equivalent to dipole model in "double limit" (small x, large Q²)

transverse imaging @ eRHIC

perform Fourier transformation of GPDs to obtain b-space image

e.g. $\eta(x,b^2) \sim \int d^2 \Delta e^{-ib\Delta} H^{\eta}(x,\xi=0,t=-\Delta^2)$ where $\Delta=p'-p$ give exclusive processes experimentally very challenging

need to integrate Roman pots into IR design

t acceptance vs magnet aperture & beam size

close collaboration between eRHIC TF & C-AD

B = 4.0 GeV⁻², exponential for Itl < 1 GeV²

extrapolate to exp
dip
mod dip
mod exp

0.001

would be nice to have
2-3 points out here

0.0001

0 0.5 1 1.5 2 2.5 3 3.5 4

Itl GeV²

extrapolation

19

CONCLUSIONS

